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Abstract

The electrical nonlinear behavior of an anti-plane shear crack in a functionally graded piezoelectric strip is studied by
using the strip saturation model within the framework of linear electroelasticity. The analysis is conducted on the
electrically unified crack boundary condition with the introduction of the electric crack condition parameter that can
describe all the electric crack boundary condition in accordance with the aspect ratio of an ellipsoidal crack and the
permittivity inside the crack, in particular, including traditional permeable and impermeable crack boundary conditions.
The resulting mixed boundary value problem is analysed and near tip field is obtained by using the integral transform
techniques. Numerical results for the normalized five kinds of energy release rates under the small scale electric saturation
condition are presented and compared to show the influences of the electric crack condition parameter with the variation
of the ellipsoidal crack parameters, electric loads, functionally graded piezoelectric material gradation, crack length,
electromechanical coupling coefficient, and crack location. It reveals that there are considerable differences between the
results obtained from the traditional electric crack models and those obtained from the current unified crack model.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Now the main difficulty is remained ambiguous how to provide effective fracture criteria for piezoelectric
materials. Two electrical crack boundary conditions have been commonly used to describing the fracture
behavior in the piezoelectric materials; permeable and impermeable ones. An elliptic cavity in a piezo-
electric material was considered by Zhang and Tong (1996) to study the boundary conditions on the cavity
surface. In the limit, they found that the two commonly used boundary conditions are actually the two
extreme cases of the exact boundary conditions. Of these extreme cases for the crack boundary conditions
where permittivity of these cracks are assumed to be infinite and zero for a slit-like crack, respectively, the
permeable assumption simply treats the crack as electrically conductive in which the applied electric loads

Tel.: +82-53-810-2442; fax: +82-53-813-3703.
E-mail address: soonmankwon@hanmail.net (S.M. Kwon).

0020-7683/$ - see front matter © 2003 Elsevier Ltd. All rights reserved.
doi:10.1016/S0020-7683(03)00316-0


mail to: soonmankwon@hanmail.net

5650 S.M. Kwon [ International Journal of Solids and Structures 40 (2003) 5649-5667

would contribute nothing to the fracture load, while the impermeable assumption considers the crack
as electrically insulated in which the energy release rate (ERR) is always negative only in the presence
of electric loading, irrespective of its sign. These contradict available experimental observations. Under
applied mechanical and electrical loads, the crack will open or slide and there is an electrical potential
difference between the upper and lower crack faces.

Motivated by some discrepancies between theory and experiment on fracture behavior of piezoelectric/
ferroelectric materials, several important issues with the recognition of an essential role of the dielectric
nonlinearity near the crack tip have been raised in the literature. In fact, piezoelectric crystals exhibit strong
electrical nonlinearity at large field strength, Yang and Suo (1994), Lynch et al. (1995), Hao et al. (1996),
Gong and Suo (1996), Ru et al. (1998) thought that polarization switching (domain wall switching) would
occur near the crack tip under electromechanical loading, which would induce the spontaneous strain that
has a great effect on the stress field. In order to derive a fracture criterion suitable for piezoelectrics, Gao
and Barnett (1996), Gao et al. (1997) and Fulton and Gao (1997) adopted a multiscale viewpoint and
identified a region of electrical nonlinearity near the crack tip in which the mechanical response of the
material remains linear. This model can be considered as a generalization of the classical Dugdale model in
fracture mechanics. They thought the piezoelectric ceramics can be considered as brittle materials and
plastic yielding is rather difficult for these materials. But these materials are electrically more ductile. The
plastic yielding zone ahead of the crack tip is much smaller than the electric saturation zone. Hence one
should take into account of the effects of the electric saturation and neglect the effects of the plastic yielding.
The local and global ERRs were derived by considering paths that pass and do not pass through the
saturation strip, respectively. They found that the local ERR gives reasonable prediction with broadly
agrees well with the experimental results. The local ERR indicates that the fracture stress is essentially a
linear function of the applied electric field. However, the analysis given by Gao et al. (1997) is based on
a simplified electroelasticity formulation. To overcome unproved the validity of their conclusions for a
general poled ferroelectric, some researches (see Ru, 1999; Ru and Mao, 1999; Zhao et al., 1999; Wang,
2000; Shen et al., 2000) have presented a fully anisotropic analysis of the electric saturation model for
piezoelectric materials. But, these approaches are based on the traditional either impermeable or permeable
crack assumptions.

This paper is concerned with the problem for the electrically saturated crack in a functionally graded
piezoelectric ceramic strip under the combined anti-plane shear and in-plane electrical loadings. The
analysis has been conducted under the electrically unified crack boundary condition (Xu and Rajapakse,
2001; Wang and Mai, 2003) that can describe more reasonable cracks. The present unified crack model can
express all of the permeable, impermeable and limited permeable crack boundary conditions by the in-
troduction of the electric crack condition parameter (ECCP). Moreover, the proposed ECCP is derived in
Section 4 in terms of two elliptic crack parameters, i.e. the ellipsoidal crack aspect ratio and the permittivity
ratio inside a crack. It is assumed that the material properties of the functionally graded piezoelectric
material vary smoothly according to an exponential function along the thickness of the strip. By using the
integral transform techniques, the problem is first reduced to two pairs of dual integral equations and then
into Fredholm integral equations of the second kind. Numerical results for the ERRs under small scale
electric yielding condition are displayed graphically to show the influences of the ECCP considering the
elliptic crack parameters, the electric loads, the functionally graded piezoelectric material gradation, the
crack length, the electromechanical coupling coefficient (EMCC), and the crack location.

2. Problem statement and governing equations

Consider a crack of length 2a in a functionally graded piezoelectric strip, which is subjected to the
combined mechanical and electric loads as shown in Fig. 1. A set of Cartesian coordinates (x,y,z) is
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Fig. 1. Electrically saturated anti-plane shear crack in a functionally graded piezoelectric strip.

attached to the center of the crack for reference purposes, in which z-axis is not depicted. The functionally
graded piezoelectric material of thickness 24, with z-axis being the poling direction, is thick enough in the
z-direction to allow a state of anti-plane shear. The shear stress, 7y, and electric displacement, D, are applied
on the top and bottom surfaces. A strip electrical yielding model with electrical polarization reaching a
saturation limit D; is also prescribed along a line segment in front of the crack, a < |x| < p. For convenience,
we assume that the functionally graded piezoelectric strip consists of upper (thickness 4;) and lower
(thickness h,) regions. Quantities in a functionally graded piezoelectric upper and lower layers will sub-
sequently be designated by subscripts i = 1 and i = 2, respectively. Because of the assumed symmetry in
geometry and loading, it is sufficient to consider the problem for 0 <x < oo only.

In an anti-plane electroelastic boundary value problem, the constitutive relations for a functionally
graded piezoelectric material in y-direction can be written as

() = 1) 8D g () D) ) = —an () D ey (n
where
Uiy) = i) — 20 u0) = ewl) + ) /dn ), @)

dii(v)

and t; and Dy; are the stress and electric displacement components, respectively. Also, w;, W, ¢, i, di1, Caa
and e;s are the out-of-plane displacement components, the Bleustein function (Bleustein, 1968), the electric
potential, the piezoelectrically stiffened elastic constant, the dielectric permittivity measured at a constant
strain, the elastic shear modulus measured in a constant electric field and the piezoelectric constant, res-
pectively.

To describe the effect of continuous composition gradient, Yamada et al. (2000) assumed that the
variations in material constants, except the piezoelectric constant varying according to the exponential law
(e.g. e;s = €' expla(y/h — 1)]), are not significant though the thickness, and thus are ignored. When a
stepwise composition gradient or such Yamada-type gradients have been introduced in crack problem of
functionally graded piezoelectric material, it increases the complexity of the problem significantly. In order
to overcome the complexity of mathematics involved, however we will focus in this initial batch of studies
on a special class of a functionally graded piezoelectric material in which the variations are in the same
proportion (Jin and Zhong, 2002; Wang, 2003; Chen et al., 2003a,b). Therefore, we assume

cu(y) = clexp(2By), eis(y) = elsexp(2By), di(y) = d} exp(2By). 3)

Though the above assumption is unrealistic for all the material properties, however it would allow us to
shed some light on the influence of the material gradient upon the stress and electric intensity factors.
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Under the above consideration, the governing equations can be simplified to the following forms:
)

2. Wi
Viw; + 2 & =0, (4)
o,
2 i
V2, +2[>’—6y 0. (5)

3. Solution to the problem

In order to obtain the desired electroelastic field, it is convenient to separate the problem considered into
two sub-problems by the principle of superposition, one corresponding to the piezoelectric strip with no
crack and the other corresponding to the piezoelectric strip with a crack for which the anti-plane shear
stress and in-plane electric displacement applied at the crack surfaces are prescribed as the negative of those
produced by the former, and the strip boundaries are also governed by appropriate conditions. From the
viewpoint of fracture mechanics, of importance is the singular field disturbed by a crack. Consequently,
one’s attention is limited on the perturbation solution for a crack.

For a slit crack, since the dielectric constant of piezoceramic is much higher than that of the air (or
vacuum) filling the crack, the electric boundary condition may be very sensitive to the crack opening or
sliding caused by the applied mechanical and electric loads. Strictly, even if the permittivity of medium inside
the crack is quite small, the flux of an electric field through the crack should not be zero. Hence, it is more
reasonable to consider the electric field inside the crack and the electric jump across the crack simulta-
neously. In this case, the crack can be modeled as a dielectric crack filled with a dielectric medium, i.e. limited
permeable crack. To this end, we prescribe D as the normal component of the electric displacement on the
crack surfaces (Xu and Rajapakse, 2001; Wang and Mai, 2003). For convenience of analysis, we introduce a
newly defined ECCP as D, = D} /Dy. D, is zero for an impermeable crack, (D,) perm for a permeable crack to be
determined in Section 4, and unknown for a limited permeable crack. It also depends on the aspect ratio of an
elliptic crack and the permittivity inside a crack, of which the relation with the ellipsoidal crack parameters
will be determined in Section 4 and will be presented graphically in Section 5.

By the principle of superposition, the boundary conditions on the cracked plane y = 0 can be described
as follows:

1.(x,0) = -1y (0<x < a), (6)
wi(x,0) = wa(x,0)  (a<x < o0), (7)
Dyi(x,0) = —Dy(1 = D,) + DH(x —a) (0<x < p), (8)
¢ (x,0) = hy(x,0)  (p<x < o00), )

in which H(x — a) is the Heaviside unit step function. Egs. (8) and (9) will be referred to hereafter elec-
trically “unified” (or “natural” in Wang and Mai (2003)) crack boundary condition. The solution to be
presented here will correctly recover both the impermeable and permeable crack solutions as limiting
solutions later (Section 4.1).

On the y = Ay, y = —h,, and y = 0, the boundary conditions are written as follows:

Tyz1 (X, hl) = T_yz2(-x7 _hZ) = Oa (10)

Dyl (x,hl) = Dyz(x, 7}12) = 0, (11)
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T}zl(x7 0) = T}ZZ(-X> O) (agx < 00)7 (12)
D, (x,0) =Dy(x,0) (a<x < 00). (13)

To solve the problem stated above, it is convenient to employ an integral transform technique to reduce the
associated mixed boundary value problem to dual integral equations. For this purpose, by use of the
Fourier cosine transform, let the solutions of Egs. (4) and (5) be given by

w;i(x, ) :% /000 [A1:(s)e”? 4+ Ayi(s)eP] cos(sx) ds, (14)
Ui(x,y) = % /0 " [Buls)e™” + Ba(s)e] cos(sx) ds, (15)

where

=B+ +B p=—f—\[+ P (16)

and Ay;(s) and By (s) (i,k = 1,2) are the unknowns to be solved.
With the aid of constitutive equation (1), it follows that the electric potential ¢,(x, y), the components of
the stress 7,,;(x,y) and the electric displacements D,;(x,y) are given by

0 00 00
by = % / ui(s)e™ + Ag(s)er] cos(sx) ds +% / [Bi(s)e™ + Bu(s)e]cos(sx)ds, (1)
11 0 0
2py 00
Tyi(X,y) = ML / [P1A1:(s)e” + prAai(s)e”] cos(sx) ds
e2ﬂv
15 / [plBlz( )e”” +szzl( )e’”)] COS(SX)d (18)
do 2y
Dy(xy) = / [PiBu(s)e"” + paBa(s)e’™] cos(sx) ds, (19)
with
(s )2
Ho = Chy + (20)

dll

It is convenient to introduce the unknown two functions P (s) and P,(s) by substituting Egs. (18) and (19)
into Eqgs. (12) and (13), respectively:

PilAn(s) — 402(s)] = —paldn(s) — An(s)) = ]%P (5), (21)
PiBu(s) = Bua(s)] = —pa[Bu(s) — Bu(s)] = %P (s). (22)

Using the above results, in conjunction with the continuity conditions (10) and (11) we find:

2
Anls) =~ pzpl e PN R, (5)Py(s), (23)
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2
A21 (S) = —pzplp;I Rl(S)Pl (S)7 (24)
2p
Alz(s) = All(s) _p2 — P1 (S), (25)
An@y:—%e@wwmu@y (26)
21’% (pr—p1)h
Bii(s) = _ﬁe PUMR, (s)Py(s), (27)
h — D1
2
Bmg:_;¥%m@g@, (28)
2py
B]z(s) :BH(S) —pz_plpz(s), (29)
B _ Pt ppiiin 30
() pze Bis(s), (30)
in which
1 1 — el2—P)i2
Ri(s) :]7_2 [ 1 — el2—p1)(+h) :| ’ (31)

Substituting the above relationships into the remaining two mixed boundary conditions of Egs. (6)-(9), it
leads to the following two simultaneous dual integral equations:

/OOC SF(s)[1oPi (s) + €5Py(s)] cos(sx) ds = gfo (0<x < a), (32)
/OC Pi(s)cos(sx)ds =0 (a<x < o0), (33)
/OOC SF(s)Py(s) cos(sx)ds = —STDIO(]) [(1 -D,) — ZDT;H(X —a)| (0<x<p), (34)
/OO [%Pl (s) +P2(s)] cos(sx)ds =0 (p<x < 00), (35)
0 11
where
Fls) = s 2

\/m coth <\/s2+7hl) + coth <\/S2-i-7h2>

mmf@@+ﬁ%
—— > |tanh <\/s2+,82h) - )
s2 4 [ sinh (2\/s2 + ﬁ2h>
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e:h—hlzhz—/’l. (37)

Next, the solutions of the dual integral equations (32)—(35) can be attempted by using well-known tech-
niques, outlined in Copson (1961). That is, we choose P;(s) and P(s) in terms of auxiliary functions (&)
and Q,(&), respectively, given in the forms:

Pl(S)_giTO 1+A0 / \/_Q JO SGE dg, (38)
Ko
np® Do(1 — D
Py(s) = — 5 ol — /\/_Qz o(spé)dE, (39)
11
where
b, Dy

Aoy =2(l—=D,); = ,
0 = Zo( ) 0 & 7

and Jy(+) stands for the zero-order Bessel function of the first kind.
Applying Egs. (38) and (39) into Egs. (32)-(35), it is easily shown that Egs. (33) and (35) are auto-
matically satisfied, and Eqs. (32) and (34) yield Fredholm integral equations of the second kind:

(8 + / ()L (&, ) dy = V/E, (41)
(&) + / S La(E, ) dn = V/EMA(E (2)
where
— Ve / Fis/a) — 11Jo(sE)o(sn) ds, (43)
J(Em) = v/ / Fls/p) — 1o(sE)o(sn) ds, (44)
1 )
My(¢) = cos-! al/p (45)
1_gﬂ—<5> <3<§<1>.
T DO 1-D P

4. Intensity factors and ERR

To find the asymptotic fields in the neighborhood of the crack tip, the portions of Pi(s) and P(s) that
contribute to the singular behaviors are found from the integration of Egs. (38) and (39) by parts in the
forms:

Pl(s)_%:;/lmi{ﬂl(l)]] sa) / I sag)dié{g\l/(?}df}, (46)
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i) = =20 L o wuiop) - [ antre) [ 22 ac), @)

where J;(-) denotes the first-order Bessel function of the first kind. The integrals in Eqs. (46) and (47) are
bounded at x = +a and x = +p, respectively. Thus the singular behaviors of the stress and electric fields are
governed by the leading terms containing Q,(1) and @,(1), respectively.

From the above results, after some lengthy algebra the singular parts of the stresses, strain, electric
displacement, and electric fields in the neighborhood of the crack tip can be expressed as

= Kt sin (Q>, T, = Kt cos (Q>, (48)

V2mr 2 \V2nr 2
ow K’ 0 ow K’ 0
Ve=a-=——==sIN|2), y.=n—=—=co0s( 3|, 49
" o 2mr (2) b dy 2mr <2> (49)
KD . 01 KD 01

D, =—-——— =), D,=—x -, 50
Lon(8) 0m e (®) o
0¢ KE | 1> 0¢ KE < 1>

Be=—o-=- 5 ) E=—a-= > ) 51
Ox V21 - < dy  2mr ) (51)

where
— _ )2 2 _ -1 Y
r=1/(x—a) +y* 6=tan (x——a)’ (52)
rn=1/(x— ,0)2 +32, 0, =tan’! ). (53)
) x _ p

Also Ky, K7, KP and KE are the stress intensity factor (SIF), the strain intensity factor, the electric dis-
placement intensity factor, and the electric field intensity factor, respectively. These field intensity factors
are given by

Km = 1im+ V21(x — a)tyzi(x, 0) = to(1 + Ao)v/ma (1), (54)
K’ = lim \/2n(x — a)p,,(x,0) —_ Km __Km (55)
xoar 'Vz cu(l+k) 1o
D . e(1)5 Ay
KP = 111}]1+ 2n(x — p)D,;i(x,0) = Do(1 — D,)/mp€h (1) = 0 FTO\/WP%U% (56)
— 44 K
KD
KE = 111’1’!r 1/ 27'[()( — p)Eyi(x,O) = d—o, (57)
x=p 11

in which the parameter k; is a measure of the strength of the electromechanical coupling in a piezoelectric
solid which is related with the electroacoustic surface wave (i.e. Bleustein—Gulyaev wave), and was intro-
duced as the EMCC in Kwon et al. (2002a,b) given by

ko = (695)2/024‘1?1- (58)
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It should be noted in Eq. (54) that the SIF based on the unified electric crack condition casts a clue on the
effect of electric load, which is different from that of traditional approaches. Thus it can be predicted by the
SIF that the crack growth is promoted or inhibited the crack growth depending the direction of electric
loads.

Since the electric displacement and the electric field at the physical crack tip are finite, the singularity
must vanish. As a result,

KP —KE—o. (59)
This requirement is used to determine the equilibrium length, w; = p — a, of the electrically yielded zone.
Wy n Dy
— = ~—(l-D)[1-P -1
2 —see { 300D = P/ - 1, (60)
where
1
Plo/i) = [ Lt @) dn (61)
0
Expanding the resultant secant function of Eq. (60) in series form, we find that, for Dy/D, < 1,
n’a [ D, 2
o= 20Dyt - plosm | (62)

To evaluate the ERR of piezoelectric materials, we use the J-integral (Cherrepanov, 1979) as
J = / (Hnl — T,:/'nju,"l —|—D,-n,-E1)dF, (63)
r

where H is the electric enthalpy per unit volume that satisfies 0H / dy; = 1y and 0H /OE; = —D;, n; is the unit
outward normal component along the path I'.

Two ERRs emerge from this problem as in Gao et al. (1997). Near the crack tip (a <x < p), the fields are
mechanically singular and electrically nonsingular. The local ERR corresponding to J-integral along an
infinitesimal local contour I'. (Fig. 2) is
o KHIK}' o KIZH T%TEG(I + Ao)2 0

= =—— 2 (1 64
> o 2k A e

where G. is a local ERR.

G.

.
N

Fig. 2. J-integral contours for evaluating local and global ERRs.
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It should be stated that the local ERR is always positive, i.e. G. > 0. Also we can confirm that the
relationship between the local ERR and the SIF is consistent with that of conventional purely elastic
fracture mechanics.

Another ERR can be obtained by evaluating J-integral along a global contour I', shown in Fig. 2. Using
the path-independent property of J-integral, the contour I', can be deformed to follow the electrical
yielding zone and join with the local contour I', at the crack tip. When this is done, the apparent (or global)
ERR is found to be

KK’ — KPKE Dinp(1 —D,)* ,
Ga - 2 — Y 2d?l Qz(l) (65)
If a fracture criterion based on G, were used, we would predict that the electric load should inhibit crack
growth irrespective of its sign. This is contradictory to the experimental results. On the other hand, a
fracture criterion based on G. would predict that fracture is promoted by a positively applied electric load
and inhibited by a negatively applied electric field. Han and Wang (1999) stated that the electric saturation
zone size or strip length in the saturation strip model remains unchanged during the crack propagation and
thus only the mechanical energy is taking into account in the local ERR. In this sense, the local ERR
provides a physical basis for the mechanical ERR of Park and Sun (1995) hard to justify physically
(McMeeking, 1999).

When the size of the saturated strip is vanishingly small, i.e. @, < @ and Q,(1) — Q,(1), it follows from
Eq. (65) that

2ra | (14 A4,)° A2
G.)eew = G, _ Tora | (1 _ A
(Gssy =Culp = @) =50 T

Qi(1). (66)

4.1. Traditional crack solutions

In what follows, we consider two special cases, viz. the impermeable crack and the permeable crack.
First, if the ECCP D, = 0 (or Ay = A¢) under the consideration of the small scale electric yielding condition,
then the solutions of the impermeable crack are written as

K = 10(1 + 40)vma:(1), (67)
6‘0 /10

KD :D()\/TELZ.Qz(I) :%pfo\/ﬂ:a{)z(l), (68)
Cas Ko

~ na(l + )’ (1), (69)

G =—"2———
2024(1 + k) 1

(1+ %) 7y

1+ K

2
T,Ta

(Ga)ssy = Tg“ QT(I) (70)

It is found that Egs. (68) and (70) are in exact agreement with the forms of the traditional impermeable
approaches, but the SIF of Eq. (67) is not consistent with that of the traditional impermeable approach.
Next, to find the ECCP D, satisfying the permeable assumption it needs an additional condition as follows:

Eq(x,0") = En(x,07) (0<x<a)

(or equivalently ¢, (x,07) = ¢,(x,07) (0<x <a)). 70
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It gives
ks
(Dr)pcrm =1- X<p)i_0’ (72)
where
—1
(1) [a®—x?
x(p) = (1”5)91(1) m—kg : (73)

It should be noted that y — 1 when the size of the saturated strip is very small. Therefore, if we consider

D, = (D;) yormy With the condition of y — 1, i.e. 4y = kj:
K = to(1 + k2)y/maQi (1), (74)
D kg e(l)S
K :Doi—\/nan(l) :T‘Co\/ﬂagz(l), (75)
0 Cyy
2 1 k2
G. :Mgﬁm, (76)
24y
©na
(Galssy = o5~ 2 (1). (77)
Cyq

The similar trend on the SIF as in an impermeable crack is also observed in the above permeable crack.

It must be addressed that the ECCP can be associated with two parameters in an elliptical flaw, i.e. the
permittivity ratio and the crack aspect ratio. The permittivity ratio x and the aspect ratio « are defined as
k =d) /e, (dY, and ¢, are dielectric permittivity of the ceramic and ellipse interior) and o = a/b (a and b are
the major and minor axes of the ellipse). From the well-established result of Zhang and Tong (1996), we can
determine the ECCP for an elliptical flaw of the form:

I (VLT
TR R () e

(78)
From the above, reconsider a mathematically slit-like crack (o — o0). In the case, there are three limits:

(i) D, = W(D’)pﬂm for a limited permeable crack when « /o — constant,
(iii) D, — 0 for an impermeable crack when k/a — oo (or g, — 0).

perm 10T @ permeable crack when x/a — 0 (or &, — 00),

Hence, the traditional impermeable and permeable crack boundary conditions are actually the two
extremes of the unified crack boundary condition.

5. Numerical results and discussion

In this section, the dependences of ERRs under small scale electric yielding condition upon the ECCP,
the electric loads, the material gradient, the EMCC, and the crack geometry are examined. From the
viewpoint of experiment, it is much simpler to measure or impose the potential difference between two
surfaces of the piezoelectric material than the charge. For this goal, an electrical to mechanical load ratio,
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{o = €Ey/7o is introduced. The relationship between normalized electric loads 4 and {, in a functionally
graded piezoelectric strip can be found from the constitutive equation (1) as
e(])SE() o )\,0 — kg

70 e (1 +k2)
We also introduce the following normalized ERRs to clarify the differences between the selected electrical
crack conditions:

Ay = kg —+ ez/ﬁh (1 =+ kg)é/o, or Co = (79)

* G, (1 + AO)Z ;
G = G TkSQf(l) (saturated unified crack) (80)
" 1 + /LO) o) .
G = =R Q(1) (saturated impermeable crack) (81)
ref
* 2 2
G, = [ rel':l 1 +k3)Q;(1) (saturated permeable crack) (82)
. (Ga)ssy (I+4)° ) ) .. .
(Gssy = = |—F7—-2|2{(1) (traditional impermeable crack) (83)
Gret 1 + k5 k
(G)ssy = {(GG“&} = Q}(1) (traditional permeable crack) (84)
ref Dy= (D" ) perm

where Gyt = (t3na)/(2¢9,).

Fig. 3 depicts the local ERR G; in accordance with the ECCP D, at {, = £0.2. The local ERR G
decrease with the increase of D,. It is observed that under the positive electric loading G is larger than G;,
but the trend is reversed under the negative one.
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Fig. 3. Normalized ERR G versus the electrical crack condition parameter D, in a center cracked piezoelectric strip.
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In Figs. 4 and 5, the influences of the aspect ratio of an elliptic crack and the permittivity inside a crack
on the local ERR are displayed. In Fig. 4, the local ERR for an elliptical flaw with an aspect ratio « = 100 is
computed with the variation of x. The computational results shows that the effects on the local ERR are
more salient in the small range of x and under larger electric fields.

In Fig. 5, a computation is performed with x = 1000, which is the order of the permittivity ratio of a
ferroelectric ceramic to that of free surface. Flaws are varied in the range of o < 1000. The ERRs decrease

3.5 T T ' 1T I T T T 1 I T 177 | T T 7T
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N
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Z i ]
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K (=d?l/aa)

Fig. 4. Comparison of G! of elliptic flaws with different permittivity ratios of « in a center cracked piezoelectric strip.
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Fig. 5. Comparison of G! of elliptic flaws with different aspect ratios of « in a center cracked piezoelectric strip.
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Fig. 6. Normalized ERRs versus (, in a center cracked piezoelectric strip.

or increase depending on the direction of electric field as the aspect ratio increase. The effect of aspect ratio
is smaller as the electric fields are smaller.

Fig. 6 displays the dependence of the electric fields {, on the normalized ERRs in an ellipsoidal flaw of
x = 1000 and « = 1000. It is observed firstly that the crack based on the local ERRs will never close and
this is the actual case. Remarkable another observation is that the solution based on the unified crack
boundary condition falls between those obtained from the impermeable crack and permeable crack. That is,
G; may be prone to overestimate and G underestimate the real crack under the positive electric fields,
whereas the trend is opposite under the negative electric fields. On the while the permeable assumption is
considered, no electric field concentration occurs, and the electric field makes no contribution to the ERR.
The local ERRs G* and G} always increase with the increase of {, irrespective of the direction of electric
field. This means that the crack growth is promoted under the positive electric field, while retarded under
the negative one. Also the well-known traditional ERR (G})¢s, does not give an explanation for the crack
growth on the direction of electric field. Because (G})¢gy at higher electric loads are negative irrespective of
the direction of electric field.

Fig. 7(a) and (b) show the effect of material gradation fla on the normalized local ERRs under the
uniform electric displacements and the uniform electric fields, respectively. Under the constant electric
displacement (Fig. 7(a)) all the local ERRs have the symmetric property with respect to fa = 0, and those
decrease or increase depending on the sign and magnitude of fa. It should be stated under the uniform
electric displacement that the local ERRs of the functionally graded piezoelectric ceramic are higher than
those of homogeneous piezoelectric materials (fa = 0). Though the local ERRs in the functionally graded
piezoelectric ceramic are increased, this deleterious effect will be completely offset by the high fracture
toughness of the functionally graded piezoelectric ceramic as in a purely elastic problem (Jin and Batra,
1996) and as a result, the residual strength of the cracked functionally graded piezoelectric ceramic will be
much higher than that of the homogeneous piezoelectric ceramic. On the other hand, the trend under the
constant electric field (Fig. 7(b)) is different that of constant electric displacement. The trend in the local
ERR G, based on the permeable assumption is exactly the same as that of the constant electric displace-
ment, however, the local ERRs G! and G; firstly decrease and reach minimum values (zero for a negative
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Fig. 7. Normalized ERRs versus fa in a center cracked piezoelectric strip: (a) constant electric displacement; (b) constant electric field.

electric field and a certain value corresponding to fla = 0 for a positive electric field), after then sharply
increase with the increase of fa. It can be also seen that the effects of the electric crack surface assumptions
are negligible in the zone of negative fla except in the vicinity of fa = 0.

The influence of the crack length on the ERRs is shown in Fig. §(a) and (b). All the electrical crack
conditions cast the same trends, i.e. the ERRs increase as a/h increases. The traditional approaches have
the same ERRs no matter what the electric field is positive or negative, because the permeable solution is
independent of the electric load as well as the impermeable solution have the symmetry with respect to
{o = 0 as can be seen in Fig. 6.
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Fig. 8. Normalized ERRs versus a/4 in a center cracked piezoelectric strip: (a) positive electric field (4o = 1.4, {, = +0.2); (b) negative
electric field (4o = 0.6, {;, = —0.2).
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Fig. 9. Normalized ERRs versus kj in a center cracked piezoelectric strip.

In Fig. 9, the effect of the EMCC k; on the ERRs is shown. It reveals that the ERRs increase regardless
of the direction of electric loads as the EMCC increases. Here the ERRs when &y = 0 represent the solutions
of the isotropic dielectric. This is useful for illustrating the issues of purely elastic materials which must be

addressed if cracks in piezoelectrics are to be understood.

Fig. 10 displays the normalized ERRs versus the crack position in a piezoelectric strip. The ERRs in-

crease with the increase of e/h.

Normalized ERRs

e/h

Fig. 10. Normalized ERRs versus e/h in a cracked piezoelectric strip.
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Finally, we consider the effect of the electrically yielded zone size w;/a upon the ECCP and the electric
loads. For the brevity of the computation, we consider a homogeneous infinite piezoelectric material (i.e.
h — oo and f# = 0). Then, the normalized strip length w,/a is determined from Eq. (60) as

% = sec B%(l —D,)} - L (85)

s
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Fig. 12. Normalized strip yielded zone size w,/a versus Dy/D, with the variation of electric loads in a cracked infinite piezoelectric
material.
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Fig. 11 shows the dependence of D, with the variation of Dy/D, on the w,/a. The longer size of strip
yielded zone is observed in the interval of negative ECCP (4 < k3) and higher applied electric displace-
ments.

Fig. 12 displays the dependence of D, /D, with the variations of electric loads 7y and {, on the w;/a in an
ellipsoidal flaw of x = 1000 and o = 1000. It shows that ,/a increases as Dy/D; increases with the decrease
of 9. The decrease of Ay means that the piezoelectric materials are electrically more ductile; the plastic
yielding zone ahead of the crack tip is much smaller than the electric saturation zone. However, the effect of
{, s different that of /o, that is, the electric ductility, resistance to fracture, increases as the negative electric
field prevails.

6. Conclusions

Motivated by recent researches on the role of the electrical polarization saturation in crack growth of
ferroelectric/piezoelectric materials, the electrically nonlinear crack problem in a functionally graded
piezoelectric ceramic strip has been analyzed by the integral transform approach. The analysis has been
conducted on the unified crack boundary condition to describe more realistic cracks. The intensity factors
and ERRs have been obtained via auxiliary functions determined from Fredholm integral equations.

It is observed that the ERRs based on the unified crack boundary condition is always positive and falls
between those obtained from the impermeable crack and permeable crack. It is also found that the ERRs
are dependent on the ECCP with two ellipsoidal crack parameters, the direction and magnitude of electrical
loads, the material gradation, the crack length, the EMCC and the crack location.

Since the concept of electrical polarization saturation in associated with the electrically unified crack
assumption gives a plausible explanation for some discrepancies between experiments and linear piezo-
electric model, it is expected to play an essential role for a physically more realistic description of fracture
behaviors in piezoelectric ceramics.
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