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Abstract

The electrical nonlinear behavior of an anti-plane shear crack in a functionally graded piezoelectric strip is studied by

using the strip saturation model within the framework of linear electroelasticity. The analysis is conducted on the

electrically unified crack boundary condition with the introduction of the electric crack condition parameter that can

describe all the electric crack boundary condition in accordance with the aspect ratio of an ellipsoidal crack and the

permittivity inside the crack, in particular, including traditional permeable and impermeable crack boundary conditions.

The resulting mixed boundary value problem is analysed and near tip field is obtained by using the integral transform

techniques. Numerical results for the normalized five kinds of energy release rates under the small scale electric saturation

condition are presented and compared to show the influences of the electric crack condition parameter with the variation

of the ellipsoidal crack parameters, electric loads, functionally graded piezoelectric material gradation, crack length,

electromechanical coupling coefficient, and crack location. It reveals that there are considerable differences between the

results obtained from the traditional electric crack models and those obtained from the current unified crack model.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Now the main difficulty is remained ambiguous how to provide effective fracture criteria for piezoelectric

materials. Two electrical crack boundary conditions have been commonly used to describing the fracture

behavior in the piezoelectric materials; permeable and impermeable ones. An elliptic cavity in a piezo-

electric material was considered by Zhang and Tong (1996) to study the boundary conditions on the cavity

surface. In the limit, they found that the two commonly used boundary conditions are actually the two

extreme cases of the exact boundary conditions. Of these extreme cases for the crack boundary conditions

where permittivity of these cracks are assumed to be infinite and zero for a slit-like crack, respectively, the

permeable assumption simply treats the crack as electrically conductive in which the applied electric loads
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would contribute nothing to the fracture load, while the impermeable assumption considers the crack

as electrically insulated in which the energy release rate (ERR) is always negative only in the presence

of electric loading, irrespective of its sign. These contradict available experimental observations. Under

applied mechanical and electrical loads, the crack will open or slide and there is an electrical potential
difference between the upper and lower crack faces.

Motivated by some discrepancies between theory and experiment on fracture behavior of piezoelectric/

ferroelectric materials, several important issues with the recognition of an essential role of the dielectric

nonlinearity near the crack tip have been raised in the literature. In fact, piezoelectric crystals exhibit strong

electrical nonlinearity at large field strength, Yang and Suo (1994), Lynch et al. (1995), Hao et al. (1996),

Gong and Suo (1996), Ru et al. (1998) thought that polarization switching (domain wall switching) would

occur near the crack tip under electromechanical loading, which would induce the spontaneous strain that

has a great effect on the stress field. In order to derive a fracture criterion suitable for piezoelectrics, Gao
and Barnett (1996), Gao et al. (1997) and Fulton and Gao (1997) adopted a multiscale viewpoint and

identified a region of electrical nonlinearity near the crack tip in which the mechanical response of the

material remains linear. This model can be considered as a generalization of the classical Dugdale model in

fracture mechanics. They thought the piezoelectric ceramics can be considered as brittle materials and

plastic yielding is rather difficult for these materials. But these materials are electrically more ductile. The

plastic yielding zone ahead of the crack tip is much smaller than the electric saturation zone. Hence one

should take into account of the effects of the electric saturation and neglect the effects of the plastic yielding.

The local and global ERRs were derived by considering paths that pass and do not pass through the
saturation strip, respectively. They found that the local ERR gives reasonable prediction with broadly

agrees well with the experimental results. The local ERR indicates that the fracture stress is essentially a

linear function of the applied electric field. However, the analysis given by Gao et al. (1997) is based on

a simplified electroelasticity formulation. To overcome unproved the validity of their conclusions for a

general poled ferroelectric, some researches (see Ru, 1999; Ru and Mao, 1999; Zhao et al., 1999; Wang,

2000; Shen et al., 2000) have presented a fully anisotropic analysis of the electric saturation model for

piezoelectric materials. But, these approaches are based on the traditional either impermeable or permeable

crack assumptions.
This paper is concerned with the problem for the electrically saturated crack in a functionally graded

piezoelectric ceramic strip under the combined anti-plane shear and in-plane electrical loadings. The

analysis has been conducted under the electrically unified crack boundary condition (Xu and Rajapakse,

2001; Wang and Mai, 2003) that can describe more reasonable cracks. The present unified crack model can

express all of the permeable, impermeable and limited permeable crack boundary conditions by the in-

troduction of the electric crack condition parameter (ECCP). Moreover, the proposed ECCP is derived in

Section 4 in terms of two elliptic crack parameters, i.e. the ellipsoidal crack aspect ratio and the permittivity

ratio inside a crack. It is assumed that the material properties of the functionally graded piezoelectric
material vary smoothly according to an exponential function along the thickness of the strip. By using the

integral transform techniques, the problem is first reduced to two pairs of dual integral equations and then

into Fredholm integral equations of the second kind. Numerical results for the ERRs under small scale

electric yielding condition are displayed graphically to show the influences of the ECCP considering the

elliptic crack parameters, the electric loads, the functionally graded piezoelectric material gradation, the

crack length, the electromechanical coupling coefficient (EMCC), and the crack location.
2. Problem statement and governing equations

Consider a crack of length 2a in a functionally graded piezoelectric strip, which is subjected to the
combined mechanical and electric loads as shown in Fig. 1. A set of Cartesian coordinates ðx; y; zÞ is



Fig. 1. Electrically saturated anti-plane shear crack in a functionally graded piezoelectric strip.
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attached to the center of the crack for reference purposes, in which z-axis is not depicted. The functionally
graded piezoelectric material of thickness 2h, with z-axis being the poling direction, is thick enough in the

z-direction to allow a state of anti-plane shear. The shear stress, s0, and electric displacement, D0 are applied

on the top and bottom surfaces. A strip electrical yielding model with electrical polarization reaching a

saturation limit Ds is also prescribed along a line segment in front of the crack, a6 jxj < q. For convenience,
we assume that the functionally graded piezoelectric strip consists of upper (thickness h1) and lower

(thickness h2) regions. Quantities in a functionally graded piezoelectric upper and lower layers will sub-

sequently be designated by subscripts i ¼ 1 and i ¼ 2, respectively. Because of the assumed symmetry in
geometry and loading, it is sufficient to consider the problem for 06 x < 1 only.

In an anti-plane electroelastic boundary value problem, the constitutive relations for a functionally

graded piezoelectric material in y-direction can be written as
skziðx; yÞ ¼ lðyÞ owiðx; yÞ
ok

þ e15ðyÞ
owiðx; yÞ

ok
; Dkiðx; yÞ ¼ �d11ðyÞ

owiðx; yÞ
ok

ðk ¼ x; yÞ; ð1Þ
where
wiðx; yÞ ¼ /iðx; yÞ �
e15ðyÞ
d11ðyÞ

wiðx; yÞ; lðyÞ ¼ c44ðyÞ þ e215ðyÞ=d11ðyÞ; ð2Þ
and skzi and Dki are the stress and electric displacement components, respectively. Also, wi, wi, /i, l, d11, c44
and e15 are the out-of-plane displacement components, the Bleustein function (Bleustein, 1968), the electric
potential, the piezoelectrically stiffened elastic constant, the dielectric permittivity measured at a constant

strain, the elastic shear modulus measured in a constant electric field and the piezoelectric constant, res-

pectively.

To describe the effect of continuous composition gradient, Yamada et al. (2000) assumed that the

variations in material constants, except the piezoelectric constant varying according to the exponential law

(e.g. e15 ¼ e015 exp½aðy=h� 1Þ�), are not significant though the thickness, and thus are ignored. When a

stepwise composition gradient or such Yamada-type gradients have been introduced in crack problem of

functionally graded piezoelectric material, it increases the complexity of the problem significantly. In order
to overcome the complexity of mathematics involved, however we will focus in this initial batch of studies

on a special class of a functionally graded piezoelectric material in which the variations are in the same

proportion (Jin and Zhong, 2002; Wang, 2003; Chen et al., 2003a,b). Therefore, we assume
c44ðyÞ ¼ c044 expð2byÞ; e15ðyÞ ¼ e015 expð2byÞ; d11ðyÞ ¼ d0
11 expð2byÞ: ð3Þ
Though the above assumption is unrealistic for all the material properties, however it would allow us to

shed some light on the influence of the material gradient upon the stress and electric intensity factors.
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Under the above consideration, the governing equations can be simplified to the following forms:
r2wi þ 2b
owi

oy
¼ 0; ð4Þ

r2wi þ 2b
owi

oy
¼ 0: ð5Þ
3. Solution to the problem

In order to obtain the desired electroelastic field, it is convenient to separate the problem considered into

two sub-problems by the principle of superposition, one corresponding to the piezoelectric strip with no

crack and the other corresponding to the piezoelectric strip with a crack for which the anti-plane shear

stress and in-plane electric displacement applied at the crack surfaces are prescribed as the negative of those

produced by the former, and the strip boundaries are also governed by appropriate conditions. From the

viewpoint of fracture mechanics, of importance is the singular field disturbed by a crack. Consequently,

one�s attention is limited on the perturbation solution for a crack.
For a slit crack, since the dielectric constant of piezoceramic is much higher than that of the air (or

vacuum) filling the crack, the electric boundary condition may be very sensitive to the crack opening or

sliding caused by the applied mechanical and electric loads. Strictly, even if the permittivity of medium inside

the crack is quite small, the flux of an electric field through the crack should not be zero. Hence, it is more

reasonable to consider the electric field inside the crack and the electric jump across the crack simulta-

neously. In this case, the crack can be modeled as a dielectric crack filled with a dielectric medium, i.e. limited

permeable crack. To this end, we prescribe Dc
y as the normal component of the electric displacement on the

crack surfaces (Xu and Rajapakse, 2001; Wang and Mai, 2003). For convenience of analysis, we introduce a
newly defined ECCP as Dr ¼ Dc

y=D0.Dr is zero for an impermeable crack, ðDrÞperm for a permeable crack to be

determined in Section 4, and unknown for a limited permeable crack. It also depends on the aspect ratio of an

elliptic crack and the permittivity inside a crack, of which the relation with the ellipsoidal crack parameters

will be determined in Section 4 and will be presented graphically in Section 5.

By the principle of superposition, the boundary conditions on the cracked plane y ¼ 0 can be described

as follows:
syziðx; 0Þ ¼ �s0 ð06 x < aÞ; ð6Þ

w1ðx; 0Þ ¼ w2ðx; 0Þ ða6 x < 1Þ; ð7Þ

Dyiðx; 0Þ ¼ �D0ð1� DrÞ þ DsHðx� aÞ ð06 x < qÞ; ð8Þ

/1ðx; 0Þ ¼ /2ðx; 0Þ ðq6 x < 1Þ; ð9Þ
in which Hðx� aÞ is the Heaviside unit step function. Eqs. (8) and (9) will be referred to hereafter elec-

trically ‘‘unified’’ (or ‘‘natural’’ in Wang and Mai (2003)) crack boundary condition. The solution to be

presented here will correctly recover both the impermeable and permeable crack solutions as limiting

solutions later (Section 4.1).

On the y ¼ h1, y ¼ �h2, and y ¼ 0, the boundary conditions are written as follows:
syz1ðx; h1Þ ¼ syz2ðx;�h2Þ ¼ 0; ð10Þ

Dy1ðx; h1Þ ¼ Dy2ðx;�h2Þ ¼ 0; ð11Þ
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syz1ðx; 0Þ ¼ syz2ðx; 0Þ ða6 x < 1Þ; ð12Þ

Dy1ðx; 0Þ ¼ Dy2ðx; 0Þ ða6 x < 1Þ: ð13Þ
To solve the problem stated above, it is convenient to employ an integral transform technique to reduce the

associated mixed boundary value problem to dual integral equations. For this purpose, by use of the

Fourier cosine transform, let the solutions of Eqs. (4) and (5) be given by
wiðx; yÞ ¼
2

p

Z 1

0

A1iðsÞep1y½ þ A2iðsÞep2y � cosðsxÞds; ð14Þ

wiðx; yÞ ¼
2

p

Z 1

0

B1iðsÞep1y½ þ B2iðsÞep2y � cosðsxÞds; ð15Þ
where
p1 ¼ �bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ b2

q
; p2 ¼ �b�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ b2

q
; ð16Þ
and AkiðsÞ and BkiðsÞ ði; k ¼ 1; 2Þ are the unknowns to be solved.
With the aid of constitutive equation (1), it follows that the electric potential /iðx; yÞ, the components of

the stress syziðx; yÞ and the electric displacements Dyiðx; yÞ are given by
/iðx; yÞ ¼
e015
d0
11

2

p

Z 1

0

A1iðsÞep1y½ þ A2iðsÞep2y � cosðsxÞdsþ
2

p

Z 1

0

B1iðsÞep1y½ þ B2iðsÞep2y � cosðsxÞds; ð17Þ

syziðx; yÞ ¼
2l0e

2by

p

Z 1

0

p1A1iðsÞep1y½ þ p2A2iðsÞep2y � cosðsxÞds

þ 2e015e
2by

p

Z 1

0

p1B1iðsÞep1y½ þ p2B2iðsÞep2y � cosðsxÞds; ð18Þ

Dyiðx; yÞ ¼ � 2d0
11e

2by

p

Z 1

0

p1B1iðsÞep1y½ þ p2B2iðsÞep2y � cosðsxÞds; ð19Þ
with
l0 ¼ c044 þ
ðe015Þ

2

d0
11

: ð20Þ
It is convenient to introduce the unknown two functions P1ðsÞ and P2ðsÞ by substituting Eqs. (18) and (19)

into Eqs. (12) and (13), respectively:
p1½A11ðsÞ � A12ðsÞ� ¼ �p2½A21ðsÞ � A22ðsÞ� �
2p1p2
p2 � p1

P1ðsÞ; ð21Þ

p1½B11ðsÞ � B12ðsÞ� ¼ �p2½B21ðsÞ � B22ðsÞ� �
2p1p2
p2 � p1

P2ðsÞ: ð22Þ
Using the above results, in conjunction with the continuity conditions (10) and (11) we find:
A11ðsÞ ¼ � 2p22
p2 � p1

eðp2�p1Þh1R1ðsÞP1ðsÞ; ð23Þ
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A21ðsÞ ¼ � 2p1p2
p2 � p1

R1ðsÞP1ðsÞ; ð24Þ

A12ðsÞ ¼ A11ðsÞ �
2p2

p2 � p1
P1ðsÞ; ð25Þ

A22ðsÞ ¼ � p1
p2

eðp2�p1Þh2A12ðsÞ; ð26Þ

B11ðsÞ ¼ � 2p22
p2 � p1

eðp2�p1Þh1R1ðsÞP2ðsÞ; ð27Þ

B21ðsÞ ¼ � 2p1p2
p2 � p1

R1ðsÞP2ðsÞ; ð28Þ

B12ðsÞ ¼ B11ðsÞ �
2p2

p2 � p1
P2ðsÞ; ð29Þ

B22ðsÞ ¼ � p1
p2

eðp2�p1Þh2B12ðsÞ; ð30Þ
in which
R1ðsÞ ¼
1

p2

1� eðp2�p1Þh2

1� eðp2�p1Þðh1þh2Þ

� �
: ð31Þ
Substituting the above relationships into the remaining two mixed boundary conditions of Eqs. (6)–(9), it

leads to the following two simultaneous dual integral equations:
Z 1

0

sF ðsÞ½l0P1ðsÞ þ e015P2ðsÞ� cosðsxÞds ¼
p
2
s0 ð06 x < aÞ; ð32Þ

Z 1

0

P1ðsÞ cosðsxÞds ¼ 0 ða6 x < 1Þ; ð33Þ

Z 1

0

sF ðsÞP2ðsÞ cosðsxÞds ¼ � pD0

2d0
11

ð1
�

� DrÞ �
Ds

D0

Hðx� aÞ
�

ð06 x < qÞ; ð34Þ

Z 1

0

e015
d0
11

P1ðsÞ
�

þ P2ðsÞ
�
cosðsxÞds ¼ 0 ðq6 x < 1Þ; ð35Þ
where
F ðsÞ ¼ sffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ b2

q 2

coth

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ b2

q
h1

� �
þ coth

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ b2

q
h2

� �

¼ sffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ b2

q tanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ b2

q
h

� �2
664 �

2 sinh2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ b2

q
e

� �

sinh 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ b2

q
h

� �
3
775; ð36Þ
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e ¼ h� h1 ¼ h2 � h: ð37Þ
Next, the solutions of the dual integral equations (32)–(35) can be attempted by using well-known tech-

niques, outlined in Copson (1961). That is, we choose P1ðsÞ and P2ðsÞ in terms of auxiliary functions X1ðnÞ
and X2ðnÞ, respectively, given in the forms:
P1ðsÞ ¼
pa2

2l0

s0ð1þ K0Þ
Z 1

0

ffiffiffi
n

p
X1ðnÞJ0ðsanÞdn; ð38Þ

P2ðsÞ ¼ � pq2

2

D0ð1� DrÞ
d0
11

Z 1

0

ffiffiffi
n

p
X2ðnÞJ0ðsqnÞdn; ð39Þ
where
K0 ¼ k0ð1� DrÞ; k0 ¼
e015
d0
11

D0

s0
; ð40Þ
and J0ð�Þ stands for the zero-order Bessel function of the first kind.

Applying Eqs. (38) and (39) into Eqs. (32)–(35), it is easily shown that Eqs. (33) and (35) are auto-

matically satisfied, and Eqs. (32) and (34) yield Fredholm integral equations of the second kind:
X1ðnÞ þ
Z 1

0

X1ðgÞL1ðn; gÞdg ¼
ffiffiffi
n

p
; ð41Þ

X2ðnÞ þ
Z 1

0

X2ðgÞL2ðn; gÞdg ¼
ffiffiffi
n

p
M2ðnÞ; ð42Þ
where
L1ðn; gÞ ¼
ffiffiffiffiffi
ng

p Z 1

0

s½F ðs=aÞ � 1�J0ðsnÞJ0ðsgÞds; ð43Þ

L2ðn; gÞ ¼
ffiffiffiffiffi
ng

p Z 1

0

s½F ðs=qÞ � 1�J0ðsnÞJ0ðsgÞds; ð44Þ

M2ðnÞ ¼

1 n <
a
q

� �
;

1� 2

p
Ds

D0

cos�1
a=q
n

� �
1� Dr

a
q
6 n < 1

� �
:

8>>>><
>>>>:

ð45Þ
4. Intensity factors and ERR

To find the asymptotic fields in the neighborhood of the crack tip, the portions of P1ðsÞ and P2ðsÞ that
contribute to the singular behaviors are found from the integration of Eqs. (38) and (39) by parts in the

forms:
P1ðsÞ ¼
ps0ð1þ K0Þa

2l0

1

s
X1ð1ÞJ1ðsaÞ

�
�
Z 1

0

nJ1ðsanÞ
d

dn
X1ðnÞffiffiffi

n
p

� �
dn

�
; ð46Þ
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P2ðsÞ ¼ � pD0ð1� DrÞq
2d0

11

1

s
X2ð1ÞJ1ðsqÞ

�
�
Z 1

0

nJ1ðsqnÞ
d

dn
X2ðnÞffiffiffi

n
p

� �
dn

�
; ð47Þ
where J1ð�Þ denotes the first-order Bessel function of the first kind. The integrals in Eqs. (46) and (47) are

bounded at x ¼ �a and x ¼ �q, respectively. Thus the singular behaviors of the stress and electric fields are

governed by the leading terms containing X1ð1Þ and X2ð1Þ, respectively.
From the above results, after some lengthy algebra the singular parts of the stresses, strain, electric

displacement, and electric fields in the neighborhood of the crack tip can be expressed as
sxz ¼ � KIIIffiffiffiffiffiffiffi
2pr

p sin
h
2

� �
; syz ¼

KIIIffiffiffiffiffiffiffi
2pr

p cos
h
2

� �
; ð48Þ

cxz ¼
ow
ox

¼ � Kcffiffiffiffiffiffiffi
2pr

p sin
h
2

� �
; cyz ¼

ow
oy

¼ Kcffiffiffiffiffiffiffi
2pr

p cos
h
2

� �
; ð49Þ

Dx ¼ � KDffiffiffiffiffiffiffiffiffi
2pr1

p sin
h1
2

� �
; Dy ¼

KDffiffiffiffiffiffiffiffiffi
2pr1

p cos
h1
2

� �
; ð50Þ

Ex ¼ � o/
ox

¼ � KEffiffiffiffiffiffiffiffiffi
2pr1

p sin
h1
2

� �
; Ey ¼ � o/

oy
¼ KEffiffiffiffiffiffiffiffiffi

2pr1
p cos

h1
2

� �
; ð51Þ
where
r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� aÞ2 þ y2

q
; h ¼ tan�1 y

x� a

� 	
; ð52Þ

r1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� qÞ2 þ y2

q
; h1 ¼ tan�1 y

x� q

� �
: ð53Þ
Also KIII, Kc, KD and KE are the stress intensity factor (SIF), the strain intensity factor, the electric dis-

placement intensity factor, and the electric field intensity factor, respectively. These field intensity factors

are given by
KIII ¼ lim
x!aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðx� aÞ

p
syziðx; 0Þ ¼ s0ð1þ K0Þ

ffiffiffiffiffiffi
pa

p
X1ð1Þ; ð54Þ

Kc ¼ lim
x!aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðx� aÞ

p
cyziðx; 0Þ ¼

KIII

c044ð1þ k20Þ
¼ KIII

l0

; ð55Þ

KD ¼ lim
x!qþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðx� qÞ

p
Dyiðx; 0Þ ¼ D0ð1� DrÞ

ffiffiffiffiffiffi
pq

p
X2ð1Þ ¼

e015
c044

K0

k20
s0

ffiffiffiffiffiffi
pq

p
X2ð1Þ; ð56Þ

KE ¼ lim
x!qþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðx� qÞ

p
Eyiðx; 0Þ ¼

KD

d0
11

; ð57Þ
in which the parameter k0 is a measure of the strength of the electromechanical coupling in a piezoelectric

solid which is related with the electroacoustic surface wave (i.e. Bleustein–Gulyaev wave), and was intro-

duced as the EMCC in Kwon et al. (2002a,b) given by
k0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðe015Þ

2
=c044d

0
11

q
: ð58Þ
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It should be noted in Eq. (54) that the SIF based on the unified electric crack condition casts a clue on the

effect of electric load, which is different from that of traditional approaches. Thus it can be predicted by the

SIF that the crack growth is promoted or inhibited the crack growth depending the direction of electric

loads.
Since the electric displacement and the electric field at the physical crack tip are finite, the singularity

must vanish. As a result,
KD ¼ KE ¼ 0: ð59Þ

This requirement is used to determine the equilibrium length, xs ¼ q� a, of the electrically yielded zone.
xs

a
¼ sec

p
2

D0

Ds
ð1

�
� DrÞ½1� P ðq=hÞ�

�
� 1; ð60Þ
where
P ðq=hÞ ¼
Z 1

0

L2ð1; gÞX2ðgÞdg: ð61Þ
Expanding the resultant secant function of Eq. (60) in series form, we find that, for D0=Ds � 1,
xs �
p2a
8

D0

Ds
ð1

�
� DrÞ½1� Pðq=hÞ�

�2

: ð62Þ
To evaluate the ERR of piezoelectric materials, we use the J -integral (Cherrepanov, 1979) as
J ¼
Z
C

Hn1



� sijnjui;1 þ DiniE1

�
dC; ð63Þ
where H is the electric enthalpy per unit volume that satisfies oH=ocij ¼ sij and oH=oEi ¼ �Di, ni is the unit
outward normal component along the path C.

Two ERRs emerge from this problem as in Gao et al. (1997). Near the crack tip ða6 x < qÞ, the fields are
mechanically singular and electrically nonsingular. The local ERR corresponding to J -integral along an
infinitesimal local contour Cc (Fig. 2) is
Gc ¼
KIIIKc

2
¼ K2

III

2l0

¼ s20pað1þ K0Þ2

2c044ð1þ k20Þ
X2

1ð1Þ; ð64Þ
where Gc is a local ERR.
Fig. 2. J -integral contours for evaluating local and global ERRs.
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It should be stated that the local ERR is always positive, i.e. Gc P 0. Also we can confirm that the

relationship between the local ERR and the SIF is consistent with that of conventional purely elastic

fracture mechanics.

Another ERR can be obtained by evaluating J -integral along a global contour Ca shown in Fig. 2. Using
the path-independent property of J -integral, the contour Ca can be deformed to follow the electrical

yielding zone and join with the local contour Cc at the crack tip. When this is done, the apparent (or global)

ERR is found to be
Ga ¼
KIIIKc � KDKE

2
¼ Gc �

D2
0pqð1� DrÞ2

2d0
11

X2
2ð1Þ: ð65Þ
If a fracture criterion based on Ga were used, we would predict that the electric load should inhibit crack

growth irrespective of its sign. This is contradictory to the experimental results. On the other hand, a

fracture criterion based on Gc would predict that fracture is promoted by a positively applied electric load

and inhibited by a negatively applied electric field. Han and Wang (1999) stated that the electric saturation

zone size or strip length in the saturation strip model remains unchanged during the crack propagation and

thus only the mechanical energy is taking into account in the local ERR. In this sense, the local ERR
provides a physical basis for the mechanical ERR of Park and Sun (1995) hard to justify physically

(McMeeking, 1999).

When the size of the saturated strip is vanishingly small, i.e. xs � a and X2ð1Þ ! X1ð1Þ, it follows from
Eq. (65) that
ðGaÞSSY ¼ Gaðq ! aÞ ¼ s20pa
2c044

ð1þ K0Þ2

1þ k20

"
� K2

0

k20

#
X2

1ð1Þ: ð66Þ
4.1. Traditional crack solutions

In what follows, we consider two special cases, viz. the impermeable crack and the permeable crack.
First, if the ECCP Dr ¼ 0 (or K0 ¼ k0) under the consideration of the small scale electric yielding condition,

then the solutions of the impermeable crack are written as
KIII ¼ s0ð1þ k0Þ
ffiffiffiffiffiffi
pa

p
X1ð1Þ; ð67Þ

KD ¼ D0

ffiffiffiffiffiffi
pa

p
X2ð1Þ ¼

e015
c044

k0
k20

s0
ffiffiffiffiffiffi
pa

p
X2ð1Þ; ð68Þ

Gc ¼
s20pað1þ k0Þ2

2c044ð1þ k20Þ
X2

1ð1Þ; ð69Þ

ðGaÞSSY ¼ s20pa
2c044

ð1þ k0Þ2

1þ k20

"
� k20

k20

#
X2

1ð1Þ: ð70Þ
It is found that Eqs. (68) and (70) are in exact agreement with the forms of the traditional impermeable

approaches, but the SIF of Eq. (67) is not consistent with that of the traditional impermeable approach.

Next, to find the ECCP Dr satisfying the permeable assumption it needs an additional condition as follows:
Ex1ðx; 0þÞ ¼ Ex2ðx; 0�Þ ð06 x < aÞ
ðor equivalently /1ðx; 0þÞ ¼ /2ðx; 0�Þ ð06 x < aÞÞ:

ð71Þ
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It gives
ðDrÞperm ¼ 1� vðqÞ k
2
0

k0
; ð72Þ
where
vðqÞ ¼ ð1
"

þ k20Þ
X2ð1Þ
X1ð1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � x2

q2 � x2

s
� k20

#�1

: ð73Þ
It should be noted that v ! 1 when the size of the saturated strip is very small. Therefore, if we consider

Dr ¼ ðDrÞperm with the condition of v ! 1, i.e. K0 ¼ k20 :
KIII ¼ s0ð1þ k20Þ
ffiffiffiffiffiffi
pa

p
X1ð1Þ; ð74Þ

KD ¼ D0

k20
k0

ffiffiffiffiffiffi
pa

p
X2ð1Þ ¼

e015
c044

s0
ffiffiffiffiffiffi
pa

p
X2ð1Þ; ð75Þ

Gc ¼
s20pað1þ k20Þ

2c044
X2

1ð1Þ; ð76Þ

ðGaÞSSY ¼ s20pa
2c044

X2
1ð1Þ: ð77Þ
The similar trend on the SIF as in an impermeable crack is also observed in the above permeable crack.

It must be addressed that the ECCP can be associated with two parameters in an elliptical flaw, i.e. the
permittivity ratio and the crack aspect ratio. The permittivity ratio j and the aspect ratio a are defined as

j ¼ d0
11=ea (d

0
11 and ea are dielectric permittivity of the ceramic and ellipse interior) and a ¼ a=b (a and b are

the major and minor axes of the ellipse). From the well-established result of Zhang and Tong (1996), we can

determine the ECCP for an elliptical flaw of the form:
Dr ¼
1þ ð1=aÞ

1þ ð1þ k20Þðj=aÞ
ðDrÞperm: ð78Þ
From the above, reconsider a mathematically slit-like crack ða ! 1Þ. In the case, there are three limits:

ii(i) Dr ¼ ðDrÞperm for a permeable crack when j=a ! 0 (or ea ! 1),

i(ii) Dr ¼ 1
1þð1þk2

0
Þðj=aÞ ðDrÞperm for a limited permeable crack when j=a ! constant,

(iii) Dr ! 0 for an impermeable crack when j=a ! 1 (or ea ! 0).

Hence, the traditional impermeable and permeable crack boundary conditions are actually the two
extremes of the unified crack boundary condition.
5. Numerical results and discussion

In this section, the dependences of ERRs under small scale electric yielding condition upon the ECCP,

the electric loads, the material gradient, the EMCC, and the crack geometry are examined. From the
viewpoint of experiment, it is much simpler to measure or impose the potential difference between two

surfaces of the piezoelectric material than the charge. For this goal, an electrical to mechanical load ratio,
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f0 ¼ e015E0=s0 is introduced. The relationship between normalized electric loads k0 and f0 in a functionally

graded piezoelectric strip can be found from the constitutive equation (1) as
k0 ¼ k20 þ e2bh1ð1þ k20Þf0; or f0 ¼
e015E0

s0
¼ k0 � k20

e2bh1ð1þ k20Þ
: ð79Þ
We also introduce the following normalized ERRs to clarify the differences between the selected electrical

crack conditions:
G�
c ¼

Gc

Gref

¼ ð1þ K0Þ2

1þ k20
X2

1ð1Þ ðsaturated unified crackÞ ð80Þ

G�
i ¼

Gc

Gref

� �
Dr¼0

¼ ð1þ k0Þ2

1þ k20
X2

1ð1Þ ðsaturated impermeable crackÞ ð81Þ

G�
p ¼

Gc

Gref

� �
Dr¼ðDrÞperm

¼ ð1þ k20ÞX2
1ð1Þ ðsaturated permeable crackÞ ð82Þ

ðG�
i ÞSSY ¼ ðGaÞSSY

Gref

� �
Dr¼0

¼ ð1þ k0Þ2

1þ k20

"
� k20

k20

#
X2

1ð1Þ ðtraditional impermeable crackÞ ð83Þ

ðG�
pÞSSY ¼ ðGaÞSSY

Gref

� �
Dr¼ðDrÞperm

¼ X2
1ð1Þ ðtraditional permeable crackÞ ð84Þ
where Gref ¼ ðs20paÞ=ð2c044Þ.
Fig. 3 depicts the local ERR G�

c in accordance with the ECCP Dr at f0 ¼ �0:2. The local ERR G�
c

decrease with the increase of Dr. It is observed that under the positive electric loading G�
i is larger than G�

p,
but the trend is reversed under the negative one.
Fig. 3. Normalized ERR G�
c versus the electrical crack condition parameter Dr in a center cracked piezoelectric strip.
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In Figs. 4 and 5, the influences of the aspect ratio of an elliptic crack and the permittivity inside a crack

on the local ERR are displayed. In Fig. 4, the local ERR for an elliptical flaw with an aspect ratio a ¼ 100 is

computed with the variation of j. The computational results shows that the effects on the local ERR are

more salient in the small range of j and under larger electric fields.
In Fig. 5, a computation is performed with j ¼ 1000, which is the order of the permittivity ratio of a

ferroelectric ceramic to that of free surface. Flaws are varied in the range of a6 1000. The ERRs decrease
Fig. 4. Comparison of G�
c of elliptic flaws with different permittivity ratios of j in a center cracked piezoelectric strip.

Fig. 5. Comparison of G�
c of elliptic flaws with different aspect ratios of a in a center cracked piezoelectric strip.



Fig. 6. Normalized ERRs versus f0 in a center cracked piezoelectric strip.
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or increase depending on the direction of electric field as the aspect ratio increase. The effect of aspect ratio
is smaller as the electric fields are smaller.

Fig. 6 displays the dependence of the electric fields f0 on the normalized ERRs in an ellipsoidal flaw of

j ¼ 1000 and a ¼ 1000. It is observed firstly that the crack based on the local ERRs will never close and

this is the actual case. Remarkable another observation is that the solution based on the unified crack

boundary condition falls between those obtained from the impermeable crack and permeable crack. That is,

G�
i may be prone to overestimate and G�

p underestimate the real crack under the positive electric fields,

whereas the trend is opposite under the negative electric fields. On the while the permeable assumption is

considered, no electric field concentration occurs, and the electric field makes no contribution to the ERR.
The local ERRs G�

c and G�
i always increase with the increase of f0 irrespective of the direction of electric

field. This means that the crack growth is promoted under the positive electric field, while retarded under

the negative one. Also the well-known traditional ERR ðG�
i ÞSSY does not give an explanation for the crack

growth on the direction of electric field. Because ðG�
i ÞSSY at higher electric loads are negative irrespective of

the direction of electric field.

Fig. 7(a) and (b) show the effect of material gradation ba on the normalized local ERRs under the

uniform electric displacements and the uniform electric fields, respectively. Under the constant electric

displacement (Fig. 7(a)) all the local ERRs have the symmetric property with respect to ba ¼ 0, and those
decrease or increase depending on the sign and magnitude of ba. It should be stated under the uniform

electric displacement that the local ERRs of the functionally graded piezoelectric ceramic are higher than

those of homogeneous piezoelectric materials ðba ¼ 0Þ. Though the local ERRs in the functionally graded

piezoelectric ceramic are increased, this deleterious effect will be completely offset by the high fracture

toughness of the functionally graded piezoelectric ceramic as in a purely elastic problem (Jin and Batra,

1996) and as a result, the residual strength of the cracked functionally graded piezoelectric ceramic will be

much higher than that of the homogeneous piezoelectric ceramic. On the other hand, the trend under the

constant electric field (Fig. 7(b)) is different that of constant electric displacement. The trend in the local
ERR G�

p based on the permeable assumption is exactly the same as that of the constant electric displace-

ment, however, the local ERRs G�
c and G�

i firstly decrease and reach minimum values (zero for a negative



Fig. 7. Normalized ERRs versus ba in a center cracked piezoelectric strip: (a) constant electric displacement; (b) constant electric field.
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electric field and a certain value corresponding to ba ¼ 0 for a positive electric field), after then sharply

increase with the increase of ba. It can be also seen that the effects of the electric crack surface assumptions

are negligible in the zone of negative ba except in the vicinity of ba � 0.

The influence of the crack length on the ERRs is shown in Fig. 8(a) and (b). All the electrical crack
conditions cast the same trends, i.e. the ERRs increase as a=h increases. The traditional approaches have

the same ERRs no matter what the electric field is positive or negative, because the permeable solution is

independent of the electric load as well as the impermeable solution have the symmetry with respect to

f0 ¼ 0 as can be seen in Fig. 6.
Fig. 8. Normalized ERRs versus a=h in a center cracked piezoelectric strip: (a) positive electric field (k0 ¼ 1:4, f0 ¼ þ0:2); (b) negative

electric field (k0 ¼ 0:6, f0 ¼ �0:2).



Fig. 9. Normalized ERRs versus k0 in a center cracked piezoelectric strip.
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In Fig. 9, the effect of the EMCC k0 on the ERRs is shown. It reveals that the ERRs increase regardless

of the direction of electric loads as the EMCC increases. Here the ERRs when k0 ¼ 0 represent the solutions

of the isotropic dielectric. This is useful for illustrating the issues of purely elastic materials which must be

addressed if cracks in piezoelectrics are to be understood.

Fig. 10 displays the normalized ERRs versus the crack position in a piezoelectric strip. The ERRs in-

crease with the increase of e=h.
Fig. 10. Normalized ERRs versus e=h in a cracked piezoelectric strip.
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Finally, we consider the effect of the electrically yielded zone size xs=a upon the ECCP and the electric

loads. For the brevity of the computation, we consider a homogeneous infinite piezoelectric material (i.e.

h ! 1 and b ¼ 0). Then, the normalized strip length xs=a is determined from Eq. (60) as
Fig. 12

materi
xs

a
¼ sec

p
2

D0

Ds
ð1

�
� DrÞ

�
� 1: ð85Þ
Fig. 11. Normalized strip yielded zone size xs=a versus Dr in a cracked infinite piezoelectric material.

. Normalized strip yielded zone size xs=a versus D0=Ds with the variation of electric loads in a cracked infinite piezoelectric

al.
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Fig. 11 shows the dependence of Dr with the variation of D0=Ds on the xs=a. The longer size of strip

yielded zone is observed in the interval of negative ECCP (k0 < k20) and higher applied electric displace-

ments.

Fig. 12 displays the dependence of D0=Ds with the variations of electric loads k0 and f0 on the xs=a in an
ellipsoidal flaw of j ¼ 1000 and a ¼ 1000. It shows that xs=a increases as D0=Ds increases with the decrease

of k0. The decrease of k0 means that the piezoelectric materials are electrically more ductile; the plastic

yielding zone ahead of the crack tip is much smaller than the electric saturation zone. However, the effect of

f0 is different that of k0, that is, the electric ductility, resistance to fracture, increases as the negative electric

field prevails.
6. Conclusions

Motivated by recent researches on the role of the electrical polarization saturation in crack growth of

ferroelectric/piezoelectric materials, the electrically nonlinear crack problem in a functionally graded

piezoelectric ceramic strip has been analyzed by the integral transform approach. The analysis has been

conducted on the unified crack boundary condition to describe more realistic cracks. The intensity factors

and ERRs have been obtained via auxiliary functions determined from Fredholm integral equations.

It is observed that the ERRs based on the unified crack boundary condition is always positive and falls

between those obtained from the impermeable crack and permeable crack. It is also found that the ERRs

are dependent on the ECCP with two ellipsoidal crack parameters, the direction and magnitude of electrical
loads, the material gradation, the crack length, the EMCC and the crack location.

Since the concept of electrical polarization saturation in associated with the electrically unified crack

assumption gives a plausible explanation for some discrepancies between experiments and linear piezo-

electric model, it is expected to play an essential role for a physically more realistic description of fracture

behaviors in piezoelectric ceramics.
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